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Free electron gas

Free electrons in metals give rise to the important properties of electrical and thermal con-
ductivity. These electrons are considered free primarily because they feel nearly no forces
due to the nuclei (other than collisions) and are largely not bound to any atom. Thus it is
quite appropriate to consider them as a gas of free electrons. The energy of any electron will
be their kinetic energy.
We will obtain the energy distribution of free electrons in a metal. Electrons are fermions
and hence the distribution has to be Fermi-Dirac distribution. We only have to write the
FD distribution in a form suitable for describing free electrons. To this end, we note that
the energy of free electron takes a continuous set of values. Therefore it would make sense
to talk about an occupation number n(E)dE for a given energy interval, say, (E,E + dE).
The second aspect is, for the free electron gas the density of states ρ(E)dE plays the role
of the degeneracy factors gi. This is so because ρ(E)dE gives us the number of phase space
points (configurations) for a fermion that correspond to an energy range (E,E + dE).

n(E)dE =
ρ(E)

e
E−EF
kBT + 1

dE (1)

We must find out ρ(E). A free electron has all its energy due to kinetic energy.

E =
p2

2m

where the p2 = p·p gives the square of the magnitude of the momentum vector p. Henceforth
we will denote this magnitude with just p = |p| =

√
p2. Thus the energy of the electron is

E =
p2

2m
(2)

From this we see that

dE =
p dp

m
=⇒ dp = m

dE√
2mE

(3)

The allowed configurations in phase space for a free particle are all of the phase space.
Volume of the phase space is given by the integral∫

dx

∫
dy

∫
dz

(
4π

∫
p2dp

)
= V

(
4π

∫
(2mE)m

dE√
2mE

)
= 4πmV

∫ √
2mEdE (4)

Electron, in addition to being a free particle inside a metal, has two possible spins. It could
be in any one of the configurations mentioned above in two ways. Thus for electrons the
allowed configurations become

2× 4πmV

∫ √
2mEdE = 8πmV

√
2mEdE (5)
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In the second step above, we have used equations (2) and (3). From this we get the density
of states that gives the configurations in the energy range (E,E + dE) to be

ρ(E)dE = 8πmV
√

2mEdE (6)

Now, according to quantum mechanics, a position coordinate x and the corresponding mo-
mentum coordinate px of a particle can never be determined more accurately than allowed
by the uncertainty relation

∆x ∆px ≥ h̄ (7)

This implies that in eqn(4) a product of each coordinate, and its corresponding momentum
will have a smallest size h̄. The entire phase space can be thought to be filled up by boxes
whose edges (or faces) have area h̄. The number of configurations in phase space can now
be counted - it is the total volume by the volume of the box h̄3 giving us,

8πmV
√

2mEdE

h̄3
(8)

Using this the FD distribution for the free electron gas turns out to be

n(E)dE =
8πmV

h̄3

√
2mE

e
E−EF
kBT + 1

dE (9)

We can now use this FD distribution to find the Fermi energy for the metal in terms of the
parameters of the metal. At absolute zero temperature T = 0K, we have learnt that the
set of free electrons fill up all energy levels up to the Fermi energy EF . The integral of the
occupation number up to Fermi energy must give the total number N of free electrons

EF∫
0

n(E)dE = N (10)

From the RHS of eqn(9), at T = 0K the FD distribution for E < EF becomes

lim
T→0

8πmV
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√
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=
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√

2mE (11)

If we integrate the FD distribution at T = 0K up to EF we must get the total number of
electrons N .

EF∫
0
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√
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⇒ 8
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N
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3h̄3

16
√

2πm
3
2

) 2
3

=
h̄2

8m
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(12)

Eqn(12) provides the Fermi energy in terms of the electron density N
V

, often a known number
for most metals, and the mass of electron m.
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