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Wavefunction

Having seen various aspects of objects in microscopic world, one must be convinced that
the physical description of those look very different from the objects that we deal with in
day-to-day (macroscopic) world. For instance, objects in microscopic world (like atoms,
electrons etc) display some features of a wave too. Moreover, measurement of position
and momentum has severe restrictions on their accuracy. In contrast, a measurement of
position and momenta of objects we see in macroscopic world face no such restrictions.
These restrictions are statistical in nature, as explained at the end of the previous section.
This requires us to seek a description of objects in microscopic world that is inherently
statistical or probabilistic. We will introduce this description after explaining the important
aspects of measurement of physical quantities.




Due to the inherent randomness in the outcome of a measurement, the state of physical
systems like electrons and atoms are specified by a function of position and time (r,t)
called wavefunction.

In what follows, we will assume that the particle to be one that moves only on a line, ie., in
one dimension. We will choose this line to be X-axis. Thus the state of this particle will be
provided by a wavefunction that depends only on X-coordinate : ¥ (x,t). Wavefunction is a
complex function and thus has a real part and an imaginary part both being independent
functions of position and time :

Y(z,t) = i (z,t) + iha(x, t) where i = v/—1

Wavefunction has a physical meaning : square of its modulus, |¢(x,t)|? = *(x,t)(x,t),
is the probability density (meaning, probability per unit length) for finding the particle.
Therefore the probability for finding the particle in the interval (z,x + dz) is

dz [¢(x, )]

The probability to find the particle between points x = z; and © = x5 is

z2

/dx |Y(z,t)? (1)
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Since the particle has to exist on the X-axis, the probability to find the particle on the entire
X-axis (—oo < z < oo) must be ONE.

oo

/d:c (a2 = 1 2)
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The condition in eqn(2) is the normalization condition for the wavefunction.
Example 1:
The wavefunction of a particle is given by

0 for —co <z <0;
»(z,1) _{ Ae 2 for 0<z < oco.

I'Note: The initial position and momenta values could be fixed only within the limits imposed by uncer-
tainty principle.



where A, o > 0 are real constants that do not depend on x and ¢. Find A using the normalization condition.
Solution:
Computing the integral in eqn(2)

oo oo

/ dz [p(z,t)]? = A? /dx e~2oT — A?

—o00 0

6720@ ) A2

—2a lo — 2a

and equating it to unity we get,

A =+2a.

Operators

Given the wavefunction we get the probability of finding the particle at a position. Can
we get any more information about the particle from it? Values of all physical quantities
related to the particle can be calculated using the wavefunction. These are the physical
quantities that can be measured in experiments. The method to calculate these is to find
the action of the operator corresponding to each physical quantity on the wavefunction. In
these lectures, we will learn about only three physical quantities - position, momentum and
energy. We will write down the operators corresponding to these and define how they act
on the wavefunction.

Position operator T =z

0

Momentum operator p = —ih—

ox

. 0

Energy operator E = Zh& (3)

The action of these operators on the wavefunction are defined as
Tp(z,t) = z(x,t) (4)

o
2 t) = —ih— 5
(.t th— (5)
. o

E t) = th— 6
vt = Q

Eqn(4) defines the action of position operator & on the wavefunction to be a multiplication
with variable z. Similarly Eqn(5) (or Eqn(6)) defines the action of momentum (or energy)
operator to be a multiplying with —if (or ih) the partial derivative of wavefunction with
respect to position (or time).

If the action of the operator O corresponding to some physical quantity on the wavefunction
is such that it gives the same wavefunction multiplied by some constant, as given in

OY°(z,t) = Ao® (2, 1) (7)

the constant Ao is taken as the value of that physical quantity for the particle in the state
(x,t). The constant A is also called the eigenvalue of the operator O. Wavefunctions that
satisfy eqn(7) is called an eigen wavefunction of O.



Example 2:
Let the wavefunction of a particle be P (z,t) = C(t)e?**. Where C(t) is some function of time. Acting with
momentum operator p on this wavefunction

9 .
pY(z,t) = —iha—zb = (hk)C(t)e™*® = p o (x, 1) where p = hk is the eigenvalue of momentum operator
x

What does it physically mean if the state (or wavefunction) of the particle is an eigen
wavefunction 1 (z,t) of some operator O? In the experiment described above, if the several
observers are measuring the value of the physical quantity represented by O they will all
find the value of the quantity to be Ap.

However, if the action of operator O on the wavefunction results in a function that is not
a constant multiple of the wavefunction, we cannot find the precise value of the physical
quantity. Nonetheless, we can find an average value of the quantity given by the expression

[e.9]

0) = [ do v (w.t) (Ov(a.n) ©)

—0o0

In eqn(8) above Ow(x, t) inside the brackets indicates the action of operator O on U(x,t).

Example 3:
Let a particle be in a state represented by a wavefunction
0 for —oo <z <0
Pz, t) = %sin (%) for 0<z<L
0 for L<zr <

Find the value of momentum for this particle.

Solution:
Acting with momentum operator on the given wavefunction

o 2 7 T
np(x,t) = —ith— = 4/ = — cos (—) M(z,t
P, t) = —inS2 = |2 T cos () # M )
Thus the given wavefunction is not an eigen wavefunction of momentum operator. We cannot find the precise
value of momentum of the particle. We can only find the average value or expectation value of momentum
given by

%) L
() = / do (2, 1) (P 1)) = 57 / do sin (%) cos (%) =0
-0 0

Other physical quantities like angular momentum, kinetic energy etc. can also be calcu-
lated from the wavefunction using their respective operators in exactly the same fashion as
described above.

Schrodinger’s equation

How does the state of a particle change with time? If the state does change with time, the
wavefunction of the particle must change accordingly. The change of wavefunction with time
can be expressed in terms of the operators that we defined above. A large class of forces
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experienced by a particle is only dependent on the position of the particle. There are several
examples for this - gravitational force, electrostatic force and elastic restoring force are a
few. The potential energy of the particle under such a force depends only on its positionand
one can write its total energy as

2
E=KE.+PE =2 1 v() 9)

2m
The expression in eqn(9) for energy holds true also as an operator equation. That is, if we
treat the momentum and position on the RHS as operators, eqn(9) provides us an operator

form of energy E.
~2

E= QP—m +V () (10)

We must be able to operate with the energy operator in eqn(10) on a wavefunction to find
the energy of the particle as described above.

. h* 0%
E - oy 1
vl t) =~ TV vy (1)
In the above, we have used the operator form of p and Z given in eqn(7). We can demand

that the result of the above operation be equal to the one in eqn(6). Then we get

ihe = ————— + V(2)® (12)

Eqn(12) is called the Schrodinger’s equation. Any wave function must obey this equation.
This equation governs the change of the wavefunction with time. Notice that we have used
the postulated form of the operators in eqns(4, 5, 6) to obtain this. It can be taken as a
postulate inasmuch as Newton’s law, that provides time rate of change of momentum to be
force. Mathematically, Schrodinger equation is a second order partial differential equation.

Conditions obeyed by wavefunction

Wavefunction will have to meet certain mathematical conditions if it has to obey the Schrédinger
equation. Schrodinger equation has second order partial derivatives with respect to position
variable z. If the potential V(z) is a continuous and smooth (differentiable) function of
position x, the wavefunction ¥ (x,t) will have to satisfy two conditions:

1. ¢(x,t) must be a continuous function of x. and t.

2. w(l‘,t)

5. must be a continuous function of z.

3. In addition, ¥ (x,t) must vanish for large values of position

lim ¢(z,t) — 0

r—+o0

The last condition arises because wavefunction must be always normalized as in eqn(2).



Fig3a Fig3b Fig3c Fig3d

Example 4:

The function in fig(3a) above cannot be a wavefunction because it is discontinuous at x = z¢. The derivative
of the function in fig(3b) is discontinuous at 2 = x; and makes this function unsuitable to be a wavefunction.
The function in fig(3c) does not vanish for large values of « and thus cannot be a wavefunction. Fig(3d)

shows a function that satisfies all the three properties that wavefunction need to obey.

Box normalization

Sometimes, the function we choose for the wavefunction do not meet the requirement 3
stated above. When such wavefunctions are substituted into the normalization condition
eqn(2)we get infinity. Therefore we cannot use this wavefunction to describe the state of a
particle, since it does not have a probability that adds up to 1. These are non-normalizable
wavefunctions but we can create a normalizable wavefunction using the technique of box
normalization. Let ¢yon(z,t) be a non-normalizable wavefunction such that

dz |pon(z, 1)) = A (13)

|
ol e

where A is some finite real number, that usually depend on the length L of the interval.
Then using Yyon(,t), we can create a well behaved wavefunction o (z,t) as

Ppox(@, 1) = ﬁ Gronl, ) (14)

Such a wavefunction obeys the normalization condition even if we let the length of the
interval L — oo.

L L
2 2
1 1
Jim [ do o, 0F = Jim % [ d Wl = Jim 3 A= (0

Nl
Nl

We can use pox(,t) as the wavefunction that describes a physical state of the particle.
Example 5:

Momentum eigen wavefunction ¢nen (2, ) = e’*? ig non-normalizable as
oo oo oo
[ o Wity = [ arierp= [ar1=oo
- —00 —00

Box normalized wavefunction for a particle in this state can be defined as

wBox(x;t) = % wnon@:at)
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Clearly

[Nl

L
2
1
1 2 = 1 — =
Jim o de [Ypox(e, )] = lim /dw 1=1

Ne]

We can use ¥pox(,t) as the wavefunction that correspond to a physical state of a free particle with definite

value of momentum p = hk.

Stationary states

Any wavefunction that describe a physical state of the particle must obey the Schrodinger

equation (12). There is a special state of the particle with a definite value of the energy. The

wavefunction ¢ (z,t) for this state will be an eigen wavefunction of the energy operator E.
o

EyE(x,t) = iho - = EYE (z,1) (16)

We choose a solution to the above equation of the form

_iBt

P (@, t) = F(2,0) e (17)

where the function ¥ (z,0) is the value of the eigen wavefunction at time ¢t = 0, called
stationary wavefunction. It is a function only of position and henceforth will be denote by
just ¢F(x) . By substituting eqn(17) into eqn(16) one can easily check that it is indeed a
solution. The significance of the stationary wavefunction is that it determines the probability
density at all times, that is,

1Et

W5 (@, ) = [WF (@) |e= = | = [¢" ()"

This means that if the particle is in a state with a definite value of energy, the probability
density for finding it at a position is the same at any time. For this reason finding the
stationary state for a particle becomes one of the most important tasks. In below we will
find the probability density for a particle that is restricted to a region of length L, but is
otherwise free.

Substituting eqn(17) into Schrédinger equation (12), we see that the oscillating time depen-

dent phase e~'i" cancels on both sides of the equation giving

h2 8277/)E
" 2m 02?2

+ V(@) (2) = Bv® () (18)

This equation is the stationary Schrodinger equation.
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