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Bose-Einstein statistics

Bose-Einstein distribution

Matter particles that are elementary mostly have a type of angular momentum called spin.
These particles are known to have a magnetic moment which is attributed to spin. Particles
that have integral values of spin (0, 1, 2, . . .) are called bosons. Photon, Weak bosons, Gluons,
Gravitons, Higgs particle etc are all bosons. A system with two bosons, labelled A and B,
located respectively at x1 and x2 have a wavefunction that is symmetric under the exchange
of particles.

ψ(x1,x2) =
1√
2

(
ψA(x1)ψ

B(x2) + ψB(x2)ψ
A(x1)

)
= ψ(x2,x1)

It is clear from the above that if we interchange the locations of the two bosons, the wave-
function remains the same. |ψ(x1,x2)|2 does not change and thus the probability densities
do not change under this interchange. The two bosons are said to be indistinguishable.
We will consider a box of N bosons. Much like in the case of MB statistics, each boson is
allowed to have one of the m different values of energy E1, E2, . . . , Em. Let g1, g2, . . . , gm be
the number of ways of occupying each of these energy levels. If n1, n2, . . . , nm be the number
of particles in each of these energy levels the total energy E, we have

N = n1 + n2 + . . .+ nm =
m∑
i=1

ni (1)

E = n1E1 + n2E2 + . . .+ nmEm =
m∑
i=1

niEi (2)

We will now derive a formula for the occupation number - the number of particles ni in the
ith energy level as a function of the energy Ei of that level. With this objective we will count
the number of ways N bosons can be distributed in the manner described above. Starting
with the first energy level E1, the n1 particles that occupy this level has g1 ways to do it.
These can be thought of as g1 cells, all corresponding to energy E1. Out of the n1 bosons
any number of could go into any one of the g1 cells as shown in the figure below. Bosons are
indicated by dots in the figure.
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We will first find the number of ways n1 bosons can be distributed into g1 cells. From the
figure above we can see that g1 cells have been made by inserting g1 − 1 walls (thicker lines
in the figure) into a box. All possible distributions of the n1 bosons into these g1 cells is
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obtained by taking all possible permutations of altogether n1 + g1 − 1 objects consisting of
n1 dots and g1−1 partitions. This can be done in (n1 + g1−1)! number of ways. Out of this
many arrangements of dots and walls, n1! arrangements must involve just the permutations
of the bosons alone. Since the bosons are indistinguishable, these n1! arrangements should
not have been counted as part of the number of ways. To remove this overcounting we divide
out a factor of n1! from the above to get

(n1 + g1 − 1)!

n1!

Further, the (n1 + g1 − 1)! arrangements also include (g1 − 1)! arrangements of the walls
alone which are also indistinguishable as they all lead to the same g1 cells. We remove this
overcounting too by dividing out a factor of (g1 − 1)!

(n1 + g1 − 1)!

n1! (g1 − 1)!
(3)

Eqn (3) provides the number of ways to distribute n1 bosons into g1 cells. Needless to say
the number of distinct ways to fill n2 fermions in the g2 cells corresponding to energy E2 is

(n2 + g2 − 1)!

n2! (g2 − 1)!

The number of distinct ways to fill n1 fermions in g1 cells, n2 fermions in g2 cells, . . ., nm
fermions in gm cells gives us the thermodynamic probability

W (E) =
(n1 + g1 − 1)!

n1! (g1 − 1)!

(n2 + g2 − 1)!

n2! (g2 − 1)!
. . .

(nm + gm − 1)!

nm! (gm − 1)!
(4)

Logarithm of this

lnW (E) = ln
(n1 + g1 − 1)!

n1! (g1 − 1)!
+ln

(n2 + g2 − 1)!

n2! (g2 − 1)!
+. . .+ln

(nm + gm − 1)!

nm! (gm − 1)!
=

m∑
i=1

ln
(ni + gi − 1)!

ni! (gi − 1)!

(5)
For gi � 1, ni � 1, we can use the Stirling’s approximation to express eqn(5) as

lnW (E) =
m∑
i=1

[(ni + gi) ln(ni + gi)− (ni + gi)

−ni lnni + ni − gi ln gi + gi] (6)

We put this box in contact with a heat bath and let it reach equilibrium. After it reaches
equilibrium if we observe this box for a short enough period of time we see no change in
energy, ie. E remains constant1. This requires

∆E = 0 =⇒
m∑
i=1

Ei∆ni = 0 (7)

1Even if we observe for long enough times, we will see fluctuations of energy ∆E that are too small
compared to the energy E. Thus the system can be, practically, considered to be at equilibrium at all times.
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At equilibrium, the amount of energy supplied or taken by the heat bath is not sufficient
to affect energy values Ei or allowed for the individual particles nor their degeneracies gi.
Therefore neither the Ei nor gi varies at equilibrium.
Note that the total number of particles N always remain the same despite the variation in
the occupation numbers ni. Thus

∆N = 0 ⇒
m∑
i=1

∆ni = 0 (8)

Further the thermodynamic probability W (E) will be maximum at equilibrium, which re-
quires ∆W (E) to vanish at the equilibrium value of energy. ∆ lnW (E) also vanishes at the
same values of energy at which ∆W (E) vanishes.

∆ lnW (E) =
∆W (E)

W (E)
= 0 (9)

Using the form of W (E) obtained in eqn(6), we can write the condition in eqn(8) as

∆ lnW (E) =
m∑
i=1

[
∆ni ln(ni + gi) + (ni + gi)

∆ni
ni + gi

−∆ni lnni − ni
∆ni
ni

]
= 0

⇒
m∑
i=1

(
ln
ni + gi
ni

)
∆ni = 0 (10)

We must require the condition in eqn(10) to hold along with the conditions in eqn(7) and
eqn(8). It is obvious that if we multiply an arbitrary constant γ′ (that is independent of ni)
to the left hand side of eqn(10) it must still vanish.

γ′
m∑
i=1

(
ln
ni + gi
ni

)
∆ni = 0 (11)

Similarly, multiplying eqn(7) and eqn(8) with arbitrary constants β′ and α′

β′
m∑
i=1

Ei∆ni = 0 (12)

α′
m∑
i=1

∆ni = 0 (13)

Clearly the sum of left hand sides of eqns(11,12, 13) must vanish too.

m∑
i=1

(
γ′ ln

ni + gi
ni

+ β′Ei + α′
)

∆ni = 0 (14)

Now, the only way eqn(14) can be satisfied for arbitrary variations ∆ni is if its coefficient
vanishes for each ∆ni.

γ′ ln
ni + gi
ni

+ β′Ei + α′ = 0 (15)
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Dividing through out by γ′ and defining new arbitrary constants α′′ = α′

γ′
and β′′ = β′

γ′
, we

can rewrite eqn(15) as

ln
ni + gi
ni

+ β′′Ei + α′′ = 0

⇒ ln
ni + gi
ni

= −β′′Ei − α′′ (16)

Exponentiating this eqn(16) and writing ni in terms of the rest of the quantities

ni =
gi

e−α′′e−β′′Ei − 1
(17)

The quantity e−α
′′

is called fugacity2. In order to evaluate the arbitrary constant β′′ we
will supply a small amount of energy to this box of fermions at a fixed volume and find out
by how much the entropy changes. The rate of change of entropy with energy at constant
volume is the inverse of the temperature of the system in absolute scale (Kelvins).

1

T
=

∆S

∆E

∣∣∣
V

(18)

When a small amount of energy ∆E is supplied it leads to a change in the number of

fermions ni in different energy levels ∆E =
m∑
i=1

∆niEi. The amount of energy supplied will

be insufficient to change the nature of the energy levels Ei of individual fermions or their
degeneracies gi and hence these remain constant.

∆Ei = 0; ∆gi = 0

The entropy of the system is found using eqn(6) to be

S = kB lnW (E) ' kB

m∑
i=1

[(ni + gi) ln(ni + gi)− ni lnni − gi ln gi] (19)

We have used Stirling’s approximation to get the final expression in eqn(19).
The change in entropy due to an excess energy ∆E is obtained from eqn(19) as

∆S = kB ∆ lnW (E)

= kB

m∑
i=1

(
ln
ni + gi
ni

)
∆ni (20)

Substituting the expression for gi
ni

from eqn(16) into eqn(20)

∆S = kB

m∑
i=1

(−α′′ − β′′Ei)∆ni

= −kBα′′
m∑
i=1

∆ni − kBβ′′
m∑
i=1

∆niEi (21)

= −β′′kB∆E (22)

2The factor α′′ is proportional to the amount of work required to insert one more boson into the box,
often called the chemical potential of the system.
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In eqn(21), the first sum is zero as the total number of particle remain unchanged (as in
eqn(8) and the second sum gives us the quantity in eqn(22).

Using the result of eqn(22) in eqn(18) we get

∆S

∆E
= −β′′kB =

1

T

β′′ = − 1

kBT
(23)

This fixes the arbitrary constant β′′. Substituting this into eqn(17) we get the Bose-Einstein
statistics or distribution for the occupation number as

ni =
gi

e−α′′e
Ei

kBT − 1
(24)

Blackbody radiation

Photons are bosons. Thus for a gas of photons inside a box of volume V their occupation
numbers must be given by BE statistics. This is situation with the radiation inside a cavity
held at a fixed temperature T . Let there be a small opening in the cavity through which
the radiation can come out of the cavity. If we measure the energy densities of the radiation
of different frequencies it has a behaviour as shown in the figure below. This is the famous

black body radiation distribution. We will now derive an expression for this energy density.
We can consider photon approximately as a particle. It is known that photon is massless3.
The energy E of a photon with momentum vector p is

E = pc (25)

where c = 3× 108ms−1 is the speed of light and p =
√
p · p is the magnitude of the momen-

tum vector.

To apply the BE statistics given in eqn (24) for the case of photons, we first note that
allowed value of energy for photons will be in the range 0 ≤ E ≤ ∞. This means, as in the

3This is closely related to the property of electromagnetic fields that they have only transverse polariza-
tions.
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case of ideal gas, we must find find how many ways a photon could have an energy in the
interval (E , E + dE). Clearly this must correspond to a momentum interval (p, p + dp). All
the momentum vectors that satisfy this must lie inside a spherical shell of radius p having
thickness dp as shown in figure below. The number of such momentum vectors will be

Volume of the spherical shell gives the number of wavevectors 

p

p

p

p
p+dp

y

x

z

with magnitude between (p,p+dp)

proportional to the volume of the shell which is 4πp2dp. Multiplying this with the volume
V of the box we get the total number of position and momentum vectors corresponding to
the energy interval (E , E + dE) as

4πV p2dp (26)

Since we are dealing with particles that can be understood only with laws of quantum
mechanics, uncertainty principle holds true for them. According to quantum mechanics, a
position coordinate x and the corresponding momentum coordinate px of a particle can never
be determined more accurately than allowed by the uncertainty relation

∆x ∆px ≥ h̄ (27)

This implies that in eqn(33) a product of each coordinate, and its corresponding momentum
will have a smallest size h̄. The entire phase space can be thought to be filled up by boxes
whose edges (or faces) have area h̄. Volume of this smallest box in phase space will be h̄3.
Now we can count the number of states in the phase space - it is the total volume divided
by the volume of the smallest box h̄3. Thus we get

4πV p2dp

h̄3
=

4πV E2dE
h̄3c3

(28)

where RHS above provides the same in terms of energy E (using of eqn (25)). Photon also
has a polarization. There are two polarizations possible for each photon. Thus we need
to multiply the above number with 2 to get the number of ways g(E)dE a photon can have
an energy in the above range as

8πV E2dE
h̄3c3

(29)

In the BE statistics given in eqn (24), we could replace gi with g(E)dE we get the occupation
number for the energy range (E , E + dE) to be

n(E) dE =
g(E) dE

e−α′′e
E

kBT − 1
=

8πV

h̄3c3
E2dE

e−α′′e
E

kBT − 1
(30)
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Photons inside a box get absorbed by the wall and get re-emitted continuously. Thus the
number of photons is never conserved. Therefore we set α′′ = 0 for the case of photon gas4.
The blackbody radiation has an occupation number given by the distribution

n(E) dE =
8πV

h̄3c3
E2dE

e
E

kBT − 1
(31)

Energy density of the photons in this range of energy is obtained by multiplying the occu-
pation number by energy E and dividing the result with volume V .

E n(E)

V
dE =

8π

h̄3c3
E3dE

e
E

kBT − 1
(32)

Quantum mechanically, energy of a photon is proportional to its (angular) frequency, E = h̄ω,
where h is the Planck’s constant. Using this in the distribution in eqn (32) we get

E n(E)

V
dE =

8πh̄

c3
ω3dω

e
h̄ω

kBT − 1
(33)

4In other words, it takes no extra work to insert one more photon into the box and the chemical potential
is zero.
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