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Equilibrium distibution

We have seen that a microstate of an ideal gas is specified by a set of values of all the 3N posi-
tion coordinates and 3N momentum coordinates (x1, px1), (y1, py1), (z1, pz1), . . . , (yN , pyN ), (zN , pzN )
of all the N molecules. However, a macrostate of the gas is specified by the total energy
E of all the gas molecules. Clearly many distinct microstates may correspond to the same
macrostate. For instance an ideal gas consisting of free particles, all the microstates whose
momentum coordinates satisfy

p2x1 + p2y1 + p2z1 + . . .+ p2zN = E (1)

would correspond to the same macrostate with energy value E. The number of microstates
corresponding to that macrostate is thermodynamic probability W (E) of that macrostate.

We will now derive a condition that thermodynamic probability of any macrostate must
obey. We will use this condition to derive an explicit form for thermodynamic probability
as a function of energy. For this purpose we will make use of an important empirical fact
about the thermodynamic probability when different parts of the ideal gas are at thermal
equilibrium.
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Consider a thermodynamic system consisting of an ideal gas in a box of volume V that is
thermally isolated from its surroundings. Let the total number of gas molecules be N with
a total energy E. Consider two subsystems 1 and 2 obtained by an imaginary partition of
the above system as indicated in the figure. Let the subsystem 1 have a volume V1, number
of molecules N1, a total energy E1 and the corresponding numbers for subsystem 2 be V2,
N2 and E2 respectively. Here N1 and N2 are taken to be sufficiently large so as to treat each
of the subsystems thermodynamic. Clearly

N1 +N2 = N E1 + E2 = E V1 + V2 = V (2)

Since the partition between the subsystems is not actual, the particles can cross over from
one side to the other. It is clear that the numbers N1, N2 and the energies E1, E2 tend to
vary with time.

If we leave the entire box undisturbed for sufficiently long time, the gas in subsystem 1 will
interact with that in 2 and finally reach an equilibrium when the average energy exchanged
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between subsystems 1 and 2 is zero. Let E
(eqbm)
1 and E

(eqbm)
2 be the energies of subsystem 1

and 2 at equilibrium. Once it reaches equilibrium variations in energy of subsystem 1 from
its E

(eqbm)
1 will be very rare and very small. Same holds true for subsystem 2 because even

at equilibrium, the total energy must remain same, E
(eqbm)
1 + E

(eqbm)
2 = E. If we plot the

probability of finding subsystem 1 for various values of its energy E1 we get

Therefore we can conclude that E
(eqbm)
1 is the most probable value for E1. In other words,

the probability as a function of energy must have a maximum at E1 = E
(eqbm)
1 .

The probability P (E1) of a macrostate must be proportional to the number of ways in which
that macrostate can be realized. Now this is precisely thermodynamic probability W (E1) of
that macrostate, ie., the number of microstates associated with that macrostate. Therefore

P (E1) ∝ W (E1)

P (E1) = cW (E1) (3)

where c is the constant of proportionality. For subsystem 2 we can similarly obtain

P ′(E2) = cW ′(E2) (4)

We have two independent subsystems 1 and 2. Thus subsystem 1 can assume any one of the
microstates allowed to it independent of what microstate subsystem 2 is in. Then we can
see that the probability for subsystem 1 to have energy E1 and 2 to have energy E2 is

P (E1, E2) = P (E1)P
′(E2) = c c′ W (E1)W

′(E2) (5)

At equilibrium, we expect the above probability to have a maximum as a function of E1.
Thus

dP (E1, E2)

dE1

∣∣∣
E1=E

(eqbm)
1

= 0 (6)

If P (E1, E2) has a maximum at E1 = E
(eqbm)
1 , then lnP (E1, E2) also must have a maximum

at the same value of energy. Finding

lnP (E1, E2) = ln(c c′) + lnW (E1) + lnW ′(E2) (7)

we get
d

dE1

lnP (E1, E2) =
1

E(E1)

W (E1)

dE1

+
dE2

dE1

1

E2

W (E2)

dE2

(8)
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From eqn (3) we get dE2

dE1
= −1, which converts the RHS of eqn (8) into

1

E(E1)

W (E1)

dE1

− 1

E2

W (E2)

dE2

(9)

Since we have a maximum for lnP (E1, E2) at E1 = E
(eqbm)
1

d lnP (E1, E2)

dE1

∣∣∣
E1=E

(eqbm)
1

= 0 (10)

⇒ 1

E1

W (E1)

dE1

∣∣∣
E1=E

(eqbm)
1

=
1

E2

W (E2)

dE2

∣∣∣
E2=E

(eqbm)
2

(11)

Note that since E is still a constant E
(eqbm)
2 = E−E(eqbm)

1 . From the above we can conclude
that different subsystems that are at at thermal equilibrium with respect to each other will
have their thermodynamic probability satisfy

1

E

W (E)

dE
= β, a constant (12)

From experiment we know that, at thermal equilibrium, different subsystems of a system
must have the same temperature T . Thus the quantity in eqn (12) must be a constant for
a constant temperature. In other words it must be a function of temperature. We will find
this function below.

It is useful to note another aspect of eqn (12). If we integrate the equation we get

W (E) = C eβE (13)

where C is the constant of integration.

This means the number of microstates associated with the macrostate with energy E grows
exponentially fast. But according to the principle of equipartition of probability, all mi-
crostates corresponding to a given macrostate have the same probability. Thus any mi-
crostate corresponding to the macrostate with energy E must have a probability

pmicro(E) =
1

W (E)
=

1

C
e−βE (14)

The exponential function e−βE of energy is known as Boltzmann factor. The value of constant
of integration C is not yet determined, hence it remains arbitrary in eqn (14).

As the number of possible ways of achieving a given value of energy increases, the disorder
of that system increases. The degree of disorder in the system is measured in terms of the
entropy S. Entropy has the feature that it is additive. For the subsystems, considered in
figure FIG this means that the net entropy of the system S is the sum of the entropy S1 of
the subsystem 1 and S2 that of the subsystem 2.
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The number of possible ways of achieving a given value of energy is the thermodynamic
probability W (E). For the subsystems 1 & 2 in figure FIG, we know that the thermody-
namic probability for subsystem 1 can have energy E1 and subsystem 2 can have energy
E2 is the product W (E1) W (E2) of their individual thermodynamic probabilities. Thus the
thermodynamic probability is multiplicative, and not additive. We can create an additive
quantity from this if we consider the logarithm of W (E).

ln (W (E1) W (E2)) = lnW (E1) + lnW (E2)

This implies the entropy must be proportional to the logarithm of the thermodynamic prob-
abilities, S(E) ∝ lnW (E)

⇒ S(E) = kB lnW (E) (15)

where constant of proportionality kB is the Boltzmann’s constant with value (in SI units)
kB = 1.38× 10−23 JK−1.
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