Fermi-Dirac statistics

Fermi-Dirac distribution

Matter particles that are elementary mostly have a type of angular momentum called spin. These particles are known to have a magnetic moment which is attributed to spin. Particles that have half odd-integral values of spin $\left(\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots\right)$ are called fermions ${ }^{1}$. Electron, proton, neutron, neutrino etc are all fermions. A system with two fermions, labelled A and B, located at \mathbf{x}_{1} and \mathbf{x}_{2} have a wavefunction that is antisymmetric under the exchange of particles.

$$
\psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi^{A}\left(\mathbf{x}_{1}\right) \psi^{B}\left(\mathbf{x}_{2}\right)-\psi^{B}\left(\mathbf{x}_{2}\right) \psi^{A}\left(\mathbf{x}_{1}\right)\right)=-\psi\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)
$$

It is clear from the above that if we interchange the locations of the two fermions, the wavefunction only changes by a sign. $\left|\psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right|^{2}$ does not change and thus the probability densities do not change under this interchange. The two fermions are said to be indistinguishable.
One important consequence of the above wavefunction is that it vanishes if we put $\mathbf{x}_{1}=\mathbf{x}_{2}$. This means that two identical (indistinguishable) fermions cannot be found in the same position. More generally, it is true that two identical fermions cannot be found in same state. This fact is called Pauli's exclusion principle. This property makes it interesting to find the distribution of fermions collected inside a box held at some temperature.
We will consider a box of N fermions. Each fermion is allowed to have one of the m different values of energy $E_{1}, E_{2}, \ldots, E_{m}$. Let $g_{1}, g_{2}, \ldots, g_{m}$ be the number of ways of occupying each of these energy levels. If $n_{1}, n_{2}, \ldots, n_{m}$ be the number of particles in each of these energy levels the total energy E, we have

$$
\begin{align*}
& N=n_{1}+n_{2}+\ldots+n_{m}=\sum_{i=1}^{m} n_{i} \tag{1}\\
& E=n_{1} E_{1}+n_{2} E_{2}+\ldots+n_{m} E_{m}=\sum_{i=1}^{m} n_{i} E_{i} \tag{2}
\end{align*}
$$

We will now derive a formula for the occupation number - the number of particles n_{i} in the $i^{\text {th }}$ energy level as a function of the energy E_{i} of that level. With this objective we will count the number of ways N fermions can be distributed in the manner described above. Starting with the first energy level E_{1}, the n_{1} particles that occupy this level has g_{1} ways to do it. These can be thought of as g_{1} cells, all corresponding to energy E_{1}. We need to fill these cells by requiring Pauli's exclusion principle to hold. This means that we can put at most one fermion per cell. Thus at most one particle can go into one cell. Clearly this requires $g_{1} \gg n_{1}$.
We will first find the number of ways n_{1} fermions can be distributed into g_{1} cells. Taking the first fermion, it has all the g_{1} cells open to it. After the first one is provided a cell, the second fermion has $g_{1}-1$ cells to choose from. There are $g_{1}\left(g_{1}-1\right)$ of filling the first two

[^0]fermions. Continuing this, we can see that there are $g_{1}\left(g_{1}-1\right) \ldots\left(g_{1}-n_{1}+1\right)$ ways of filling n_{1} fermions into g_{1} cells. We can write this count as
$$
g_{1}\left(g_{1}-1\right) \ldots\left(g_{1}-n_{1}+1\right)=\frac{g_{1}!}{\left(g_{1}-n_{1}\right)!}
$$

These n_{1} fermions are identical and any of their permutations must be indistinguishable. Thus the number of distinct ways in which n_{1} fermions can be filled in g_{1} cells is

$$
\begin{equation*}
\frac{g_{1}!}{n_{1}!\left(g_{1}-n_{1}\right)!} \tag{3}
\end{equation*}
$$

Similarly the number of distinct ways to fill n_{2} fermions in g_{2} cells is

$$
\frac{g_{2}!}{n_{2}!\left(g_{2}-n_{2}\right)!}
$$

The number of distinct ways to fill n_{1} fermions in g_{1} cells, n_{2} fermions in g_{2} cells,..., n_{m} fermions in g_{m} cells gives us the thermodynamic probability

$$
\begin{equation*}
W(E)=\frac{g_{1}!}{n_{1}!\left(g_{1}-n_{1}\right)!} \frac{g_{2}!}{n_{2}!\left(g_{2}-n_{2}\right)!} \cdots \frac{g_{m}!}{n_{m}!\left(g_{m}-n_{m}\right)!} \tag{4}
\end{equation*}
$$

Taking a logarithm of this we get

$$
\begin{equation*}
\ln W(E)=\ln \frac{g_{1}!}{n_{1}!\left(g_{1}-n_{1}\right)!}+\ln \frac{g_{2}!}{n_{2}!\left(g_{2}-n_{2}\right)!}+\ldots+\ln \frac{g_{m}!}{n_{m}!\left(g_{m}-n_{m}\right)!}=\sum_{i=1}^{m} \ln \frac{g_{i}!}{n_{i}!\left(g_{i}-n_{i}\right)!} \tag{5}
\end{equation*}
$$

For $g_{i} \gg 1, n_{i} \gg 1$, we can use the Stirling's approximation to simplify eqn(??) to obtain

$$
\begin{align*}
\ln W(E) & =\sum_{i=1}^{m}\left[g_{i} \ln g_{i}-g_{i}-n_{i} \ln n_{i}+n_{i}-\left(g_{i}-n_{i}\right) \ln \left(g_{i}-n_{i}\right)+g_{i}-n_{i}\right] \\
& =\sum_{i=1}^{m}\left[g_{i} \ln g_{i}-n_{i} \ln n_{i}-\left(g_{i}-n_{i}\right) \ln \left(g_{i}-n_{i}\right)\right] \tag{6}
\end{align*}
$$

We put this box in contact with a heat bath and let it reach equilibrium. After it reaches equilibrium if we observe this box for a short enough period of time we see no change in energy, ie. E remains constant ${ }^{2}$. This requires

$$
\begin{equation*}
\Delta E=0 \Longrightarrow \sum_{i=1}^{m} E_{i} \Delta n_{i}=0 \tag{7}
\end{equation*}
$$

At equilibrium, the amount of energy supplied or taken by the heat bath is not sufficient to affect energy values E_{i} or allowed for the individual particles nor their degeneracies g_{i}. Therefore neither the E_{i} nor g_{i} varies at equilibrium.

[^1]Note that the total number of particles N always remain the same despite the variation in the occupation numbers n_{i}. Thus

$$
\begin{equation*}
\Delta N=0 \Rightarrow \sum_{i=1}^{m} \Delta n_{i}=0 \tag{8}
\end{equation*}
$$

Further the thermodynamic probability $W(E)$ will be maximum at equilibrium, which requires $\Delta W(E)$ to vanish at the equilibrium value of energy. $\Delta \ln W(E)$ also vanishes at the same values of energy at which $\Delta W(E)$ vanishes.

$$
\begin{equation*}
\Delta \ln W(E)=\frac{\Delta W(E)}{W(E)}=0 \tag{9}
\end{equation*}
$$

Using the form of $W(E)$ obtained in eqn(6), we can write the condition in eqn(8) as

$$
\begin{align*}
& \Delta \ln W(E)=0 \\
\Rightarrow \quad & \sum_{i=1}^{m}\left[-\Delta n_{i} \ln n_{i}-n_{i} \frac{\Delta n_{i}}{n_{i}}+\Delta n_{i} \ln \left(g_{i}-n_{i}\right)+\left(g_{i}-n_{i}\right) \frac{\Delta n_{i}}{g_{i}-n_{i}}\right]=0 \\
\Rightarrow \quad & \sum_{i=1}^{m}\left(\ln \frac{g_{i}-n_{i}}{n_{i}}\right) \Delta n_{i}=0 \tag{10}
\end{align*}
$$

We must require the condition in eqn(10) to hold along with the conditions in eqn(7) and eqn(8). It is obvious that if we multiply an arbitrary constant γ^{\prime} (that is independent of n_{i}) to the left hand side of eqn(10) it must still vanish.

$$
\begin{equation*}
\gamma^{\prime} \sum_{i=1}^{m}\left(\ln \frac{g_{i}-n_{i}}{n_{i}}\right) \Delta n_{i}=0 \tag{11}
\end{equation*}
$$

Similarly, multiplying eqn(7) and eqn(8) with arbitrary constants β^{\prime} and α^{\prime}

$$
\begin{align*}
\beta^{\prime} \sum_{i=1}^{m} E_{i} \Delta n_{i} & =0 \tag{12}\\
\alpha^{\prime} \sum_{i=1}^{m} \Delta n_{i} & =0 \tag{13}
\end{align*}
$$

Clearly if sum the left hand sides of eqns $(11,12,13)$ it must vanish too.

$$
\begin{equation*}
\sum_{i=1}^{m}\left(\gamma^{\prime} \ln \frac{g_{i}-n_{i}}{n_{i}}+\beta^{\prime} E_{i}+\alpha^{\prime}\right) \Delta n_{i}=0 \tag{14}
\end{equation*}
$$

Now, the only way eqn(14) can be satisfied for arbitrary variations Δn_{i} is if its coefficient vanishes for each Δn_{i}.

$$
\begin{equation*}
\gamma^{\prime} \ln \frac{g_{i}-n_{i}}{n_{i}}+\beta^{\prime} E_{i}+\alpha^{\prime}=0 \tag{15}
\end{equation*}
$$

Dividing through out by γ^{\prime} and defining new arbitrary constants $\alpha=\frac{\alpha^{\prime}}{\gamma^{\prime}}$ and $\beta=\frac{\beta^{\prime}}{\gamma^{\prime}}$, we can rewrite eqn(15) as

$$
\begin{align*}
& \ln \frac{g_{i}-n_{i}}{n_{i}}+\beta^{\prime \prime} E_{i}+\alpha^{\prime \prime}=0 \\
& \Rightarrow \ln \frac{g_{i}-n_{i}}{n_{i}}=-\beta^{\prime \prime} E_{i}-\alpha^{\prime \prime} \tag{16}
\end{align*}
$$

Exponentiating this eqn(16) and writing n_{i} in terms of the rest of the quantities

$$
\begin{equation*}
n_{i}=\frac{g_{i}}{e^{-\alpha^{\prime \prime}} e^{-\beta^{\prime \prime \prime} E_{i}}+1} \tag{17}
\end{equation*}
$$

In order to evaluate the arbitrary constant $\beta^{\prime \prime}$ we will supply a small amount of energy to this box of fermions at a fixed volume and find out by how much the entropy changes. The rate of change of entropy with energy at constant volume is the inverse of the temperature of the system in absolute scale (Kelvins).

$$
\begin{equation*}
\frac{1}{T}=\left.\frac{\Delta S}{\Delta E}\right|_{V} \tag{18}
\end{equation*}
$$

When a small amount of energy ΔE is supplied it leads to a change in the number of fermions n_{i} in different energy levels $\Delta E=\sum_{i=1}^{m} \Delta n_{i} E_{i}$. The amount of energy supplied will be insufficient to change the nature of the energy levels E_{i} of individual fermions or their degeneracies g_{i} and hence these remain constant.

$$
\Delta E_{i}=0 ; \quad \Delta g_{i}=0
$$

The entropy of the system is found using eqn(6) to be

$$
\begin{equation*}
S=k_{B} \ln W(E) \simeq k_{B} \sum_{i=1}^{m}\left[g_{i} \ln g_{i}-n_{i} \ln n_{i}-\left(g_{i}-n_{i}\right) \ln \left(g_{i}-n_{i}\right)\right] \tag{19}
\end{equation*}
$$

We have used Stirling's approximation to get the final expression in eqn(19).
The change in entropy due to an excess energy ΔE is obtained from eqn(19) as

$$
\begin{align*}
\Delta S & =k_{B} \sum_{i=1}^{m}\left[-n_{i} \frac{\Delta n_{i}}{n_{i}}-\Delta n_{i} \ln \left(n_{i}\right)+\Delta n_{i} \ln \left(g_{i}-n_{i}\right)+\left(g_{i}-n_{i}\right) \frac{\Delta n_{i}}{g_{i}-n_{i}}\right] \\
& =k_{B} \sum_{i=1}^{m}\left[\Delta n_{i} \ln \frac{g_{i}-n_{i}}{n_{i}}\right] \tag{20}
\end{align*}
$$

Substituting the expression for $\frac{g_{i}}{n_{i}}$ from eqn(17) into eqn(20)

$$
\begin{align*}
\Delta S & =k_{B} \sum_{i=1}^{m} \Delta n_{i}\left(\ln e^{-\alpha^{\prime \prime}-\beta^{\prime \prime} E_{i}}\right)=k_{B} \sum_{i=1}^{m} \Delta n_{i}\left(-\alpha^{\prime \prime}-\beta^{\prime \prime} E_{i}\right) \\
& =-k_{B} \alpha^{\prime \prime} \sum_{i=1}^{m} \Delta n_{i}-k_{B} \beta^{\prime \prime} \sum_{i=1}^{m} \Delta n_{i} E_{i} \tag{21}\\
& =-\beta^{\prime \prime} k_{B} \Delta E \tag{22}
\end{align*}
$$

In eqn(21), the first sum is zero as the total number of particle remain unchanged (as in eqn(8) and the second sum gives us the quantity in eqn(22).
Using the result of eqn(22) in eqn(18) we get

$$
\begin{array}{r}
\frac{\Delta S}{\Delta E}=-\beta^{\prime \prime} k_{B}=\frac{1}{T} \\
\beta^{\prime \prime}=-\frac{1}{k_{B} T} \tag{23}
\end{array}
$$

This fixes the arbitrary constant β. Substituting this into eqn(17) we get the Fermi-Dirac distribution for the occupation number as

$$
\begin{equation*}
n_{i}=\frac{g_{i}}{e^{-\alpha^{\prime \prime}} e^{\frac{E_{i}}{k_{B} T}}+1} \tag{24}
\end{equation*}
$$

Now consider the box of N fermions at $T=0 K$. At absolute zero all the particles tend to sit at the lowest possible energy level available to them. But fermions obey Pauli's exclusion principle and only one at a time can occupy any quantum state. If the total number of fermions N is much greater than the degeneracy g_{1} of the lowest energy level E_{1}, the remaining fermions will have to occupy the remaining lower energy levels. Thus, even at $T=0 K$ there could be fermions up to a certain energy level E_{F}. This energy level is called the Fermi level of the system. At $T=0 K$, or energy levels with $E_{i} \leq E_{F}$, will have all the g_{i} cells will be filled up by one fermion each. The number of fermions in such energy levels will be thus equal to the number cells, $n_{i}=g_{i}$. For energy levels with $E_{i}>E_{F}$ we find no fermions $n_{i}=0$. Thus the ratio

$$
\frac{n_{i}}{g_{i}}= \begin{cases}1 & \text { for } E \leq E_{F} \\ 0 & \text { for } E>E_{F}\end{cases}
$$

From Fermi-Dirac probability distribution in eqn(24) we see that this ratio is

$$
\begin{equation*}
\frac{n_{i}}{g_{i}}=\frac{1}{e^{-\alpha^{\prime \prime}} e^{\frac{E_{i}}{k_{B} T}}+1} \tag{25}
\end{equation*}
$$

The expression in eqn(25) on the right hand side has the desired behaviour if $\alpha^{\prime \prime}=\frac{E_{F}}{k_{B} T}$ as explained below.
At $T=0 K$ for $E_{i}<E_{F}$, the quantity $\frac{E_{i}-E_{F}}{k_{B} T}$ becomes $-\infty$. Then the expression on the RHS of eqn(25) becomes

$$
\frac{1}{e^{-\infty}+1}=\frac{1}{0+1}=1
$$

This matches with the expected value of $n_{i}=g_{i}$.
At $T=0 K$ for $E_{i}>E_{F}$, the quantity $\frac{E_{i}-E_{F}}{k_{B} T}$ becomes ∞. Then the expression on the RHS of eqn(25) becomes

$$
\frac{1}{e^{\infty}+1}=\frac{1}{\infty+1}=0
$$

Again the expected value $n_{i}=0$ is reproduced correctly.
Thus having fixed both the arbitrary constants we can write down the Fermi-Dirac distribution as

$$
\begin{equation*}
n_{i}=\frac{g_{i}}{e^{\frac{E_{i}-E_{F}}{k_{B} T}}+1} \tag{26}
\end{equation*}
$$

At $T=0 K$, this distribution is, strictly speaking, not valid for $E=E_{F}$. Mathematically this is because the ratio $\frac{E_{i}-E_{F}}{k_{B} T}$ is undetermined in this case. Physically, this indicates an ambiguity for the number of fermions n_{F} at this energy level as all the g_{F} cells corresponding to this energy value need not be filled up. However at any finite temperature $T \neq 0 K$, Fermi level is the energy value at which the ratio $\frac{n_{i}}{g_{i}}=\frac{n_{F}}{g_{F}}=\frac{1}{2}$.
Next we will use Fermi-Dirac distribution to obtain the energy distribution of electrons in metals.

[^0]: ${ }^{1}$ Those that have integral values of $\operatorname{spin}(0,1,2, \ldots)$ are bosons.

[^1]: ${ }^{2}$ Even if we observe for long enough times, we will see fluctuations of energy ΔE that are too small compared to the energy E. Thus the system can be considered to be at equilibrium for all times

