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Fermi-Dirac statistics

Fermi-Dirac distribution

Matter particles that are elementary mostly have a type of angular momentum called spin.
These particles are known to have a magnetic moment which is attributed to spin. Particles
that have half odd-integral values of spin (1

2
, 3
2
, 5
2
, . . .) are called fermions1. Electron, proton,

neutron, neutrino etc are all fermions. A system with two fermions, labelled A and B, located
at x1 and x2 have a wavefunction that is antisymmetric under the exchange of particles.

ψ(x1,x2) =
1√
2

(
ψA(x1)ψ

B(x2)− ψB(x1)ψ
A(x2)

)
= −ψ(x2,x1)

It is clear from the above that if we interchange the locations of the two fermions, the
wavefunction only changes by a sign. |ψ(x1,x2)|2 does not change and thus the probability
densities do not change under this interchange. The two fermions are said to be indistin-
guishable.
One important consequence of the above wavefunction is that it vanishes if we put x1 = x2.
This means that two identical (indistinguishable) fermions cannot be found in the same
position. More generally, it is true that two identical fermions cannot be found in same
state. This fact is called Pauli’s exclusion principle. This property makes it interesting to
find the distribution of fermions collected inside a box held at some temperature.
We will consider a box of N fermions. Each fermion is allowed to have one of the m different
values of energy E1, E2, . . . , Em. Let g1, g2, . . . , gm be the number of ways of occupying each
of these energy levels. If n1, n2, . . . , nm be the number of particles in each of these energy
levels the total energy E, we have

N = n1 + n2 + . . .+ nm =
m∑
i=1

ni (1)

E = n1E1 + n2E2 + . . .+ nmEm =
m∑
i=1

niEi (2)

We will now derive a formula for the occupation number - the number of particles ni in the
ith energy level as a function of the energy Ei of that level. With this objective we will count
the number of ways N fermions can be distributed in the manner described above. Starting
with the first energy level E1, the n1 particles that occupy this level has g1 ways to do it.
These can be thought of as g1 cells, all corresponding to energy E1. We need to fill these
cells by requiring Pauli’s exclusion principle to hold. This means that we can put at most
one fermion per cell. Thus at most one particle can go into one cell. Clearly this requires
g1 � n1.
We will first find the number of ways n1 fermions can be distributed into g1 cells. Taking
the first fermion, it has all the g1 cells open to it. After the first one is provided a cell, the
second fermion has g1 − 1 cells to choose from. There are g1(g1 − 1) of filling the first two

1Those that have integral values of spin (0, 1, 2, . . .) are bosons.
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fermions. Continuing this, we can see that there are g1(g1−1) . . . (g1−n1 + 1) ways of filling
n1 fermions into g1 cells. We can write this count as

g1(g1 − 1) . . . (g1 − n1 + 1) =
g1!

(g1 − n1)!

These n1 fermions are identical and any of their permutations must be indistinguishable.
Thus the number of distinct ways in which n1 fermions can be filled in g1 cells is

g1!

n1!(g1 − n1)!
(3)

Similarly the number of distinct ways to fill n2 fermions in g2 cells is

g2!

n2!(g2 − n2)!

The number of distinct ways to fill n1 fermions in g1 cells, n2 fermions in g2 cells,. . ., nm
fermions in gm cells gives us the thermodynamic probability

W (E) =
g1!

n1!(g1 − n1)!

g2!

n2!(g2 − n2)!
. . .

gm!

nm!(gm − nm)!
(4)

Taking a logarithm of this we get

lnW (E) = ln
g1!

n1!(g1 − n1)!
+ ln

g2!

n2!(g2 − n2)!
+ . . .+ ln

gm!

nm!(gm − nm)!
=

m∑
i=1

ln
gi!

ni!(gi − ni)!
(5)

For gi � 1, ni � 1, we can use the Stirling’s approximation to simplify eqn(5) to obtain

lnW (E) =
m∑
i=1

[gi ln gi − gi − ni lnni + ni − (gi − ni) ln(gi − ni) + gi − ni]

=
m∑
i=1

[gi ln gi − ni lnni − (gi − ni) ln(gi − ni)] (6)

We put this box in contact with a heat bath and let it reach equilibrium. If we observe
the box of fermions after it reaches equilibrium for a short enough period of time we see no
change in energy, ie. E remains constant2. This requires

∆E = 0 =⇒
m∑
i=1

Ei∆ni = 0 (7)

At equilibrium, the amount of energy supplied or taken by the heat bath is not sufficient
to affect energy values Ei or allowed for the individual particles nor their degeneracies gi.
Therefore neither the Ei nor gi varies at equilibrium.

2Even if we observe for a long duration, the fluctuation ∆E in energy that are too small compared to the
energy E. Thus the system can be considered to be at equilibrium for all times
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Note that the total number of particles N always remain the same despite the variation in
the occupation numbers ni. Thus

∆N = 0 ⇒
m∑
i=1

∆ni = 0 (8)

Further the thermodynamic probability W (E) will be maximum at equilibrium, which re-
quires ∆W (E) to vanish at the equilibrium value of energy. ∆ lnW (E) also vanishes at the
same values of energy at which ∆W (E) vanishes.

∆ lnW (E) =
∆W (E)

W (E)
= 0 (9)

Using the form of W (E) obtained in eqn(6), we can write the condition in eqn(8) as

∆ lnW (E) = 0

⇒
m∑
i=1

[
−∆ni lnni − ni

∆ni
ni

+ ∆ni ln(gi − ni) + (gi − ni)
∆ni
gi − ni

]
= 0

⇒
m∑
i=1

(
ln
gi − ni
ni

)
∆ni = 0 (10)

We must require the condition in eqn(10) to hold along with the conditions in eqn(7) and
eqn(8). It is obvious that if we multiply an arbitrary constant γ′ (that is independent of ni)
to the left hand side of eqn(10) it must still vanish.

γ′
m∑
i=1

(
ln
gi − ni
ni

)
∆ni = 0 (11)

Similarly, multiplying eqn(7) and eqn(8) with arbitrary constants β′ and α′

β′
m∑
i=1

Ei∆ni = 0 (12)

α′
m∑
i=1

∆ni = 0 (13)

Clearly if sum the left hand sides of eqns(11,12, 13) it must vanish too.

m∑
i=1

(
γ′ ln

gi − ni
ni

+ β′Ei + α′
)

∆ni = 0 (14)

Now, the only way eqn(14) can be satisfied for arbitrary variations ∆ni is if its coefficient
vanishes for each ∆ni.

γ′ ln
gi − ni
ni

+ β′Ei + α′ = 0 (15)

Dividing through out by γ′ and defining new arbitrary constants α = α′

γ′
and β = β′

γ′
, we can

rewrite eqn(15) as

ln
gi − ni
ni

+ β′′Ei + α′′ = 0

⇒ ln
gi − ni
ni

= −β′′Ei − α′′ (16)
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Exponentiating this eqn(16) and writing ni in terms of the rest of the quantities

ni =
gi

e−α′′e−β′′′Ei + 1
(17)

In order to evaluate the arbitrary constant β′′ we will supply a small amount of energy to
this box of fermions at a fixed volume and find out by how much the entropy changes. The
rate of change of entropy with energy at constant volume is the inverse of the temperature
of the system in absolute scale (Kelvins).

1

T
=

∆S

∆E

∣∣∣
V

(18)

When a small amount of energy ∆E is supplied it leads to a change in the number of

fermions ni in different energy levels ∆E =
m∑
i=1

∆niEi. The amount of energy supplied will

be insufficient to change the nature of the energy levels Ei of individual fermions or their
degeneracies gi and hence these remain constant.

∆Ei = 0; ∆gi = 0

The entropy of the system is found using eqn(6) to be

S = kB lnW (E) ' kB

m∑
i=1

[gi ln gi − ni lnni − (gi − ni) ln(gi − ni)] (19)

We have used Stirling’s approximation to get the final expression in eqn(19).
The change in entropy due to an excess energy ∆E is obtained from eqn(19) as

∆S = kB

m∑
i=1

[
−ni

∆ni
ni
−∆ni ln(ni) + ∆ni ln(gi − ni) + (gi − ni)

∆ni
gi − ni

]
= kB

m∑
i=1

[
∆ni ln

gi − ni
ni

]
(20)

Substituting the expression for gi
ni

from eqn(17) into eqn(20)

∆S = kB

m∑
i=1

∆ni

(
ln e−α

′′−β′′Ei

)
= kB

m∑
i=1

∆ni(−α′′ − β′′Ei)

= −kBα′′
m∑
i=1

∆ni − kBβ′′
m∑
i=1

∆niEi (21)

= −β′′kB∆E (22)

In eqn(21), the first sum is zero as the total number of particle remain unchanged (as in
eqn(8) and the second sum gives us the quantity in eqn(22).
Using the result of eqn(22) in eqn(18) we get

∆S

∆E
= −β′′kB =

1

T

β′′ = − 1

kBT
(23)
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This fixes the arbitrary constant β. Substituting this into eqn(17) we get the Fermi-Dirac
distribution for the occupation number as

ni =
gi

e−α′′e
Ei

kBT + 1
(24)

Now consider the box of N fermions at T = 0K. At absolute zero all the particles tend
to sit at the lowest possible energy level available to them. But fermions obey Pauli’s
exclusion principle and only one at a time can occupy any quantum state. If the total
number of fermions N is much greater than the degeneracy g1 of the lowest energy level E1,
the remaining fermions will have to occupy the remaining lower energy levels. Thus, even at
T = 0K there could be fermions up to a certain energy level EF . This energy level is called
the Fermi level of the system. At T = 0K, or energy levels with Ei ≤ EF , will have all the
gi cells will be filled up by one fermion each. The number of fermions in such energy levels
will be thus equal to the number cells, ni = gi. For energy levels with Ei > EF we find no
fermions ni = 0. Thus the ratio

ni
gi

=

{
1 for E ≤ EF ;
0 for E > EF

From Fermi-Dirac probability distribution in eqn(24) we see that this ratio is

ni
gi

=
1

e−α′′e
Ei

kBT + 1
(25)

The expression in eqn(25) on the right hand side has the desired behaviour if α′′ = EF

kBT
as

explained below.

E
F

E

n

i

i

T=0 T>0

At T = 0K for Ei < EF , the quantity Ei−EF

kBT
becomes −∞. Then the expression on the RHS

of eqn(25) becomes
1

e−∞ + 1
=

1

0 + 1
= 1

This matches with the expected value of ni = gi.
At T = 0K for Ei > EF , the quantity Ei−EF

kBT
becomes ∞. Then the expression on the RHS

of eqn(25) becomes
1

e∞ + 1
=

1

∞+ 1
= 0

Again the expected value ni = 0 is reproduced correctly.
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Thus having fixed both the arbitrary constants we can write down the Fermi-Dirac distribu-
tion as

ni =
gi

e
Ei−EF
kBT + 1

(26)

At T = 0K, this distribution is, strictly speaking, not valid for E = EF . Mathematically
this is because the ratio Ei−EF

kBT
is undetermined in this case. Physically, this indicates an

ambiguity for the number of fermions nF at this energy level as all the gF cells corresponding
to this energy value need not be filled up. However at any finite temperature T 6= 0K, Fermi
level is the energy value at which the ratio ni

gi
= nF

gF
= 1

2
.

It is useful to see what the plot of ni as a function of Ei looks like. It is as given in figure
(). The plot of ni at T = 0 is indicated by dashed line. In this case, we could see that
fermions fill up all energy levels up to Fermi level EF and but there are no fermions above
that. However at T > 0, energy levels above EF may also be filled.

In the following section, we will use Fermi-Dirac distribution to obtain the energy distribution
of electrons in metals.
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