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Introduction

The smallest constituent of any matter that can be identified are molecules or atoms. Yet
knowing the molecular or atomic details are not sufficient to describe the properties of mat-
ter as we see it. For instance, knowing that it is H2O molecule alone would not have told us
whether we are describing water, ice or steam.

A gas (liquid or solid) consists of a large numbe of molecules, typically of the order of Avo-
gadro’s number. Knowing the molecular form of the gas, we could try to describe the state of
the gas in terms of the states of the individual molecules. If we treat gas molecules approxi-
mately as classical particles1, the state of any molecule will be given in terms of the position
coordinates and momentum components (x, y, z, px, py, pz). For any classical particle given
its state at some initial time, its state at any other time is completely predictable using clas-
sical equations of motion2. An important characteristic of a gas in a container, when held
at a temperature, is the rapid motion of its constituent molecules. During this motion, they
collide with each other as well as with the walls of the container. As the number of molecules
is very large, every molecule undergoes millions of collisions every second and its state keep
changing rapidly. The change is so rapid that, at the rate at which we are able to make
observations, it is not possible for us to observe all the changes. This makes it impossible to
predict their motion using classical equations of motion. All we can say is the probability of
finding the particle in a certain state. Anything that we can measure to learn about the gas
molecule can only be an average quantity. This indicates that the motion of gas molecules
exhibit randomness. This is true, in general for all matter and many other thermodynamic
systems like a ferromagnet whose constituents are not even mechanical particles. Taking into
account all these we can say that, microscopically, all thermodynamic systems are random
systems.

To familiarise ourself with random systems and to define the basic elements of our study, let
us turn to a simple example - tossing of a coin N times. Let p be the probability for a head
to occur in every one of these coins and q the probability for a tail.
When we toss a coin N times, we expect the coin to turn in a head in a certain number of
tosses and tails in the remaining ones. Let us look at a possibility of n number of heads
turning out in N tosses. These n heads could occur in any ordering of the N outcomes. For
instance, {THHTTHHHT} is one possible ordering of n = 5 heads in a toss of N = 9 coins.
How many different such orderings can be found? Answer is 9C5. In general, the number of
distinct orderings with n heads in N tosses of a coin is NCn. Henceforth, we will call these
different orderings microstates of N tosses. A given value of n corresponds to NCn distinct
microstates. We will also term a given value of n as a macrostate of N tosses. Since the
probability of a head is p and that of a tail is q = 1− p, the probability for occurence of any
one of the microstates with n heads is pn qN−n. The probability to get a macrostate with n
heads in a toss of N coins is

P (n) =N Cn pn qN−n (1)

1That means, particles that obey Newton’s law
2Such as Newton’s law
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One could ask what the average number of heads in N tosses. It is the expectation value of
n

〈n〉 =
N∑

n=0

n P (n) (2)

=
N∑

n=0

n NCn pn qN−n

= p
N∑

n=1

N−1Cn−1p
n−1qN−n

= Np (3)

What is interesting about the above experiment is that instead of tossing a coin N times,
we could toss N identical copies of one coin. The copies are identical in the sense that
probability of a head is p and that of tail is q is every copy. The collection of N identical
copies is called an ensemble. Tossing N coins will again result in a certain number of heads
and a certain number of tails. If we now look at the possibility of finding n heads in these
N coins we find that there are NCn (microstates). Hence the probability of n coins sporting
a head (a macrostate) turns out to be the same as given in equation (1). Moreover the
average value of n computed over the above probability is also as given in equation (2).
Thus tossing an ensemble N independent copies of a coin mimics the results of tossing a
single coin N times. Averages found over the ensemble gives the same results as the average
found in time. This phenomenon is called ergodicity. Systems that exhibit ergodicity are
called ergodic systems.
Coming back to a physical example, let us suppose we are able to observe motion of every
molecule of a thermally isolated box of gas. Clearly the energy E of the gas remains con-
stant. Giving the position and momentum (r,p) of any molecule will specify the state of
that molecule. If we know this for all the N molecules at any instant of time, we know a
microstate of that gas at that instant. If we observe each molecule of the gas for a long time
we could notice that each one goes through all possible states it could achieve. This causes
the gas to go through all possible microstates it could achieve at that energy. Probability of
any one of these microstates can be found and it is equal to any other microstates. Now if
we take a large number of identical copies of the box at energy E we obtain an ensemble.
The probability of finding gas in a particular microstate in any one these copies happens to
be identical to the probability of finding that microstate while observing a single box of gas
for a long time. Thus ensemble average of any quantity will be the same as its time average
and the system is ergodic.

Finally, if we remove the thermal isolation and let the box of gas reach thermal equilibrium
with its surroundings the system retain ergodicity. 3 Thus ergodicity is a necessary condition
for all themrodynamic systems.

This preliminary discussion shows that we need to recognize the random nature that ther-
modynamic systems exhibit microscopically. In the following sections of these notes we will

3Probability of all microstates will not be equal now. But it will depend upon the energy of that microstate
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set up the basic tools to study this randomness and give a description of thermodynamics
in terms of those microscopic information.
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