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Maxwell-Boltzmann statistics

Maxwell-Boltzmann distribution

Consider a system of N identical particles in a box of volume V . Each of the above particles
is allowed any one of the energy values E1, E2, . . . Em. These m energy values will be called
single particle energy levels. Let the number of distinct ways in which a particle can acquire
these energy values be g1, g2, . . . , gm respectively. We can call them the degeneracies of the
m single particle energy levels. Let n1, n2, . . . , nm be the number of particles in these m
energy levels. If the total energy of the system of N molecules is E then they must satisfy

N = n1 + n2 + . . .+ nm =
m∑
i=1

ni (1)

E = n1E1 + n2E2 + . . .+ nmEm =
m∑
i=1

niEi (2)

We will now derive an expression for the number ni of particles having energy value Ei,
where the index i takes any one the values i = 1, 2, . . . ,m. This number ni is the occupation
number of energy level Ei.

First step to this is to find the number of ways in which N particles can be distributed
among m energy levels with n1 in the first level, n2 in the second and so on nm in the mth.
The number of ways in which n1 particles in the first level can be chosen from N particles is

NCn1 =
N !

n1!(N − n1)!

Now each of these n1 particles could occupy first level in g1 ways, implying that the number
of ways in which the chosen n1 particles could occupy energy level E1 in gn1

1 ways. Thus n1

particles could be chosen to occupy first energy level in NCn1 · gn1
1 number of ways. Similarly

we see that out of the remaining N − n1 particles n2 particles in the second level can be
chosen in N−n1Cn2 · gn2

2 ways. Now the number of ways in which the first two levels can be
filled in the above manner is clearly

NCn1 · gn1
1 · N−n1Cn2 · gn2

2

as the the second choice is independent of the first. Continuing this we get the number of
ways in which N particles can be distributed among m energy levels to be

NCn1 g
n1
1 · N−n1Cn2 g

n2
2 . . . N−n1−n2−...−nm−2Cnm−1 g

nm−1

m−1 · N−n1−n2−...−nm−1Cnm gnm
m

= NCn1

N−n1Cn2 . . . N−n1−n2−...−nm−2Cnm−1

N−n1−n2−...−nm−1Cnm · gn1
1 gn2

2 . . . g
nm−1

m−1 g
nm
m

=
N !

n1!n2! . . . nm!
· gn1

1 gn2
2 . . . g

nm−1

m−1 g
nm
m (3)

This quantity in eqn (3) is the thermodynamic probability of the macrostate of the system
of N particles with energy E.

W (E) =
N !

n1!n2! . . . nm!
· gn1

1 gn2
2 . . . g

nm−1

m−1 g
nm
m (4)
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Taking a logarithm of this we get

lnW (E) = lnN ! − lnn1! − lnn2! − . . .− lnnm! + ln gn1
1 + ln gn2

2 + . . . + ln gnm
m

= lnN ! +
m∑
i=1

(ln gni
i − lnni!)

= lnN ! +
m∑
i=1

(ni ln gi − lnni!) (5)

For n� 1, we can use the Stirling’s approximation to write

lnn! = n lnn− n (6)

Typically, N � 1 and ni � 1 for the system of particles we consider. Thus we can use this
approximation in eqn (5) to obtain

lnW (E) = N lnN −N +
m∑
i=1

[ni ln gi − ni lnni + ni] (7)

Now we put this box in contact with a heat bath and let it reach equilibrium. After it reaches
equilibrium if we observe this box for a short enough period of time we see no change in
energy, ie. E remains constant1.
We assume that, at equilibrium the amount of energy supplied or taken by the heat bath is
not sufficient to change the single particle energy levels Ei or their degeneracies gi. Therefore
neither the Ei nor gi varies at equilibrium and all of the change in E is caused by a change
in ni. This requires

∆E =
m∑
i=1

Ei ∆ni (8)

The heat bath is much bigger compared to the system and thus the change of energy experi-
ences by it is going to be negligible. However at equilibrium, change in energy of the system
and of the heat bath will be equal in magnitude but opposite in sign. Thus the change in
energy of the system ∆E = 0, implying

∆E =
m∑
i=1

Ei ∆ni = 0 (9)

Also since particles cannot be added to or removed from the box that we consider, the total
number of particles N always remain the same despite the change in the occupation numbers
ni. Thus

∆N = 0 ⇒
m∑
i=1

∆ni = 0 (10)

Lastly the thermodynamic probability W (E) will be maximum at equilibrium, which requires
∆W (E) to vanish at the equilibrium value of energy. But ∆ lnW (E) also vanishes at the
same values of energy at which ∆W (E) vanishes as seen below

∆ lnW (E) =
∆W (E)

W (E)
= 0 (11)

1Even if we observe for long enough times, we will see fluctuations of energy ∆E that are too small
compared to the energy E. Thus the system can be considered to be at equilibrium at all times
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Using the form of lnW (E) obtained in eqn (7), we can write the condition in eqn (11) as

∆ lnW (E) =
m∑
i=1

[
∆ni ln gi −∆ni lnni − ni

∆ni
ni

+ ∆ni

]
= 0

⇒
m∑
i=1

ln
gi
ni

∆ni = 0 (12)

We must require the condition in eqn(12) to hold along with the conditions in eqn(8) and
eqn(10). But we can require a more general condition.

It is obvious that if we multiply an arbitrary constant γ′ (that is independent of ni) to the
left hand side of eqn(12) it must still vanish.

γ′
m∑
i=1

ln
gi
ni

∆ni = 0 (13)

Similarly, multiplying eqn(9) and eqn(10) with arbitrary constants β′ and α′

β′
m∑
i=1

Ei ∆ni = 0 (14)

α′
m∑
i=1

∆ni = 0 (15)

Clearly if we add the left hand sides of eqns(13,14, 15) the sum must vanish too, thus giving
a condition

m∑
i=1

(
γ′ ln

gi
ni

+ β′Ei + α′
)

∆ni = 0 (16)

Now, the only way eqn(16) can be satisfied for arbitrary variations ∆ni is if its coefficient
vanishes for each ∆ni.

γ′ ln
gi
ni

+ β′Ei + α′ = 0 (17)

Dividing through out by γ′ and introducing new arbitrary constants α′′ = α′

γ′
and β′′ = β′

γ′
,

we can rewrite eqn (17) as

ln
gi
ni

+ β′′Ei + α′′ = 0

⇒ ln
gi
ni

= −β′′Ei − α′′ (18)

Exponentiating this eqn(18) and writing ni in terms of the rest of the quantities

ni = eα
′′
gi e

β′′Ei (19)

Eqn (19) provides us the promised expression that gives the occupation number ni of ith

level as a function of its energy Ei. But it is still incomplete because we do not know the
values of the arbitrary constants α′′ and β′′.
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First we will evaluate α′′ in terms of β′′ and other given quantities. This can be done by
summing the LHS of eqn (19) over the index i. Doing this we get

m∑
i=1

ni = eα
′′

m∑
i=1

gi e
β′′Ei

⇒ eα
′′

=
N

(
∑m

i=1 gi eβ
′′Ei)

(20)

Finding α′′ from eqn (20) is straightforward, but, for us, it is enough to find eα
′′
. Substituting

eqn (20) back in eqn (19) we get

ni =
N gi e

β′′Ei

(
∑m

i=1 gi eβ
′′Ei)

(21)

where β′′ remains to be evaluated.

In order to evaluate the arbitrary constant β′′ we will supply a small amount of energy to
this box of particles at fixed volume and find out by how much the entropy of the system
changes. The rate of change of entropy with energy at constant volume is the inverse of the
temperature of the system in absolute scale (Kelvins).

1

T
=

∆S

∆E

∣∣∣
V

(22)

When a small amount of energy ∆E is supplied it leads to a change in the number of fermions

ni in different energy levels ∆E =
m∑
i=1

∆niEi. Again the amount of energy supplied is assumed

to be insufficient to change the nature of the energy levels Ei of individual fermions or their
degeneracies gi. Nor does the total number of particles change in the process. Thus

∆Ei = 0; ∆gi = 0;
m∑
i=1

∆ni = 0; ∆E =
m∑
i=1

∆niEi (23)

Using eqn(7) we can find the entropy of the system as

S = kB lnW (E) ' kB (N lnN −N) + kB

m∑
i=1

[ni ln gi − ni lnni + ni] (24)

We have used Stirling’s approximation to get the final expression in eqn(24).

The change in entropy due to the additional energy ∆E, from eqn(24), is found to be

∆S = kB lnW (E) =
m∑
i=1

ln
gi
ni

∆ni (25)

Substituting the expression for ni from eqn(21) into eqn(25) we get

∆S = kB

m∑
i=1

∆ni

(
ln

∑m
i=1 gi e

β′′Ei

N
+ ln e−β

′′Ei

)
= kB

(
ln

∑m
i=1 gi e

β′′Ei

N

) m∑
i=1

∆ni − kBβ′′
m∑
i=1

∆niEi (26)

= −β′′kB∆E (27)
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where we have substituted the last two relations in eqn (23) into eqn (26) to obtain eqn (27).
Using the result of eqn(27) in eqn(22) we get

∆S

∆E
= −β′′kB =

1

T

⇒ β′′ = − 1

kBT
(28)

Thus we evaluate the second arbitrary constant β′′. Substituting this into eqn(21) we get
the Maxwell-Boltzmann distribution or statistics for the occupation number

ni =
N gi e

− Ei
kBT(

m∑
i=1

gi e
− Ei

kBT

) (29)

Physical meaning of the above distribution can be understood if we notice that the quantity

ni
N

=
gi e

− Ei
kBT(

m∑
i=1

gi e
− Ei

kBT

) (30)

gives us the probability of finding a particle in the ith energy level. Thus MB distribution
provides us the estimate for the number of particles in ith energy level in terms of a proba-
bility distribution. Important feature of this probability is that the higher a single particle
energy level is, exponentially lesser is the probability of finding a particle at that level.
But one must keep in mind that the probability also depends on the degeneracy gi of that
single particle level.

Maxwell distribution for ideal gas

An immediate use of MB statistics would be to obtain a distribution for ideal gas particles.
Ideal gas consists of identical free particles that do not experience any force. Energy of each
of the ideal gas is kinetic. Single particle energy levels E for a free particle take values in the
interval 0 ≤ E ≤ ∞. Because it is kinetic energy, in terms of the momentum vector p of the
particle we can express

E =
p · p
2m

(31)

We can use MB statistics to find the distribution of the ideal gas molecules at various ener-
gies if we generalize the MB statistics to the case where single particle energy is continuous.
In addition, we must also know how to find gi in this case.

MB statistics continuous single particle energy levels will give us number of particles n(E) dE
that have energy value between E and E + dE . First thing to do is to replace Ei in the MB
statistics in eqn (29) with E . We must now find out what takes the place of gi. For this,
we must remember that it basically counts the number of ways in which any particle can
achieve energy Ei. Since the single particle energy is now continuous, now we can only say
how many ways can a particle have a value of energy between E and E + dE . This number
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will be proportional on dE itself, clearly. If g(E) is the number of ways in which the particle
could be in a unit energy interval at E , we see that g(E)dE gives us the number of ways can
a particle have a value of energy between E and E +dE . Finally the denominator of eqn (29)
contains a summation over energy levels. In this case, it must be replaced with an integral
over energy levels.

With all the inputs said above, MB statistics gives for ideal gas,

n(E) dE =
N g(E) e

− E
kBT dE

∞∫
0

g(E)e
− E

kBT dE
(32)

In eqn (32), we still have to say what g(E)dE the number of ways an ideal gas particle can
have energy between E and E + dE is. While studying the phase space of a free particle in a
box of volume V we had seen that the number of ways an ideal gas particle can have energy
between E and E + dE is

V 4πp2

h3
dp =

4πmV
√

2mE
h3

dE (33)

where h3 was the volume of the smallest volume element in phase space and p = |p| = √p · p
is the magnitude of the momentum vector. Thus g(E) is just the density of states for a
particle. If ideal gas particle is a free particle g(E)dE must be given by the RHS of eqn (33).
Substituting this into eqn (32) we find

n(E) dE =
N 4πmV

√
2mE

h3
e
− E

kBT dE
∞∫
0

4πmV
√
2mE

h3
e
− E

kBT dE
=
N
√
E e−

E
kBT dE

∞∫
0

√
Ee−

E
kBT dE

(34)

The integral in the denominator of eqn (34) gives

∞∫
0

√
Ee−

E
kBT dE =

Γ
(
3
2

)
β

3
2

=

√
π

2β
3
2

(35)

In the above equation we have used β = 1
kBT

. Substituting the above result into eqn (34) we
obtain the Maxwell distribution for occupation number as

n(E) dE =
2N√
π

(
1

kBT

) 3
2 √
E e−

E
kBT dE (36)

Occupation number varies with energy as shown below and has a maximum at 1
2
kBT .
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Notice that energy of the particle specifies a macrostate of the particle. Thus the integral
in eqn (33) carrys out a sum over the possible macrostates of a particle. We could express
the the above also as an integral over the microstates of that particle. What makes up the
microstates of the particle? The pair of vectors (r,p) specifying position and momentum
of the particle, of course. Thus expressing the integral as one over microstates requires us
to rewrite the integral over energy as an integral over position coordinates and momentum
components. But the energy of an ideal gas particle depends only on the magnitude of the
momentum vector as indicated by eqn (31). Thus in the integral over microstates all the
three integrals over position coordinates and two of the integrals over momentum components
can be carried out. The only integral that remains will be the one over the magnitude of the
momentum, resulting in the integral on the left hand side of eqn (33). Substituting equations
(31,33) into eqn (36), we get

N 4πV p2

h3
e
− p2

2mkBT dp
∞∫
0

4πV p2

h3
e
− p2

2mkBT dp

= N
4πp2 e

− p2

2mkBT dp

(2πmkBT )
3
2

= n(p) dp (37)

This gives us the number of ideal gas particles having absolute momentum in the range
(p, p+ dp) namely, Maxwell’s momentum distribution for ideal gas particles.

One can easily derive Maxwell’s velocity distribution for the ideal gas by putting p = mv in
eqn (37) above, where v = |v| is the magnitude of the velocity v of an ideal gas particle.

N

(
m

2πkBT

) 3
2

4πv2 e
− p2

2mkBT dv = n(v) dv (38)

which estimates the number of ideal gas particles with velocity int he range (v, v + dv).

Thermodynamics of ideal gas

From the MB statistics it is easy to calculate the average energy U of the ideal gas in the
box, we must multiply the occupation number in eqn (36) with the energy of a particle E
and integrate over all value of energy.

U =

∞∫
0

En(E) dE =
2N√
π

(
1

kBT

) 3
2

∞∫
0

E
3
2 e
− E

kBT dE =
2N√
π

(
1

kBT

) 3
2 Γ(5

2
)(

1
kBT

) 5
2

=
2N√
π

(kBT )
3

4
Γ(

1

2
) =

2N√
π

(kBT )
3

4

√
π =

3

2
N kBT (39)

This is the familiar expression for internal energy of an ideal gas which may be derived
also using kinetic theory of gases. It can be seen that each degree of freedom contributes a
factor of 1

2
kBT to the average energy of a single molecule. As each molecule has 3 degrees of

freedom, each molecule contributes a factor of 3
2
kBT to the energy of the gas. There being

a total of 3N degrees of freedom results in the average energy value of 3
2
NkBT of the gas.

The fact that the energy is equally partitioned among each degree of freedom is often called
equipartition of energy.

7



Specific heat at constant volume CV is the rate of increase in energy with temperature at
constant volume. Using the expression for internal energy above we see

CV =
∂U

∂T

∣∣∣
V

=
3

2
NkB (40)

One often writes this in terms of the gas constant R defined asNAkB, whereNA = 6.023×1023

is the Avogadro’s number, to get the familiar expression

CV =
3

2
nR (41)

Here n represents the quantity of gas in moles. One could observe that the specific heat
gives a count of the degrees of freedom of the system.

One can proceed further to derive all the known thermodynamics of ideal gas from statistical
mechanics and verify the physical description it provides.

Gibb’s paradox

Despite the success of MB statistics in describing the thermodynamics of ideal gas it has a
severe problem. The problem can identified by examining the expression for entropy that
results from the MB statistics. Let us first calculate the entropy of the gas in the first
compartment starting from the expression in eqn (24).

S1 = kB(N lnN −N) + kB

m∑
i=1

(ni lnni − ni)

= kBN lnN +
1

T
U + kBN lnA− kBN lnN (42)

In the second step we have denoted

m∑
i=1

gi e
−βEi = A (43)

after substituting eqn (29) for ni.
For the ideal gas we have already found U in eqn (39). However to find entropy S from eqn
(42) we must calculate A. For ideal gas the single particle energy takes continuous set of
values, as discussed in paragraph above eqn (32). Therefore the expression in eqn (43) for
A will have to be generalized to

A =

∞∫
0

dE g(E) e−βE (44)

For ideal gas, we had seen that number of ways a single particle can have energy between E
and E + dE is as obtained in eqn (33)

g(E)dE =
4πmV

√
2mE

h3
dE
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Substituting this into eqn (44) and doing the integral we get

A =
4πmV

√
2m

h3

∞∫
0

dE
√
E e−βE = V

(
2πmkBT

h2

) 3
2

(45)

By substituting eqn (45) into eqn (42), we get the entropy for an ideal gas as

S = kB

[
N lnN +

3

2
N +

3

2
N ln

(
V

N

2πmkBT

h2

)]
(46)

Now let us consider same ideal gas in a box with two compartments separated by a wall.
Let the volumes of the two compartments be V1 and V2 with the number of molecules in
them being N1 and N2 respectively. The temperature T and densities of the ideal gas in two
compartments are taken to be the same.

N1

V1
=
N2

V2

Using eqn (46), the entropies of the gas in the first and second compartments will be,
respectively

S1 = kB

[
N1 lnN1 +

3

2
N1 +

3

2
N1 ln

(
V1
N1

2πmkBT

h2

)]
S2 = kB

[
N2 lnN2 +

3

2
N2 +

3

2
N2 ln

(
V1
N2

2πmkBT

h2

)]
(47)

Now we remove the wall separating the compartments slowly and allow the gas to mix.
Easily the density of the gas after mixing will be the same as what it was

N1 +N2

V1 + V2
=
N1

V1
=
N2

V2
(48)

As the temperature and densities are the same one would expect the entropy Sf after
mixing to be the sum of the initial entropies S1 and S2f . However if you add the expressions
for S1 and S2 in eqn (47) one finds

S1 + S2 = kB

[
(N1 lnN1 +N2 lnN2) +

3

2
(N1 +N2) +

3

2
(N1 +N2) ln

(
V1 + V2
N1 +N2

2πmkBT

h2

)]
(49)

However using the expression in eqn (46) we get

Sf = kB

[
(N1 +N2) ln(N1 +N2) +

3

2
(N1 +N2) +

3

2
(N1 +N2) ln

(
V1 + V2
N1 +N2

2πmkBT

h2

)]
(50)

Clearly the expressions in eqns (49) and (50) have a mismatch, but only in the first term.
This contradiction is refered to as Gibb’s paradox. Physically eqn (49) seem to suggest that
the entropy of an ideal gas in a box would depend on how we arrived at that configuration.
If we obtained that gas starting with many walls and compartments and removing the walls
slowly, the gas should have larger entropy than if we have started with fewer walls and com-
partments. In other words, the gas must have some “memory” of its past, which is physically
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just absurd.

The first term in entropy that gives rise to Gibb’s paradox would not have been there if
the expression for thermodynamic probability W (E) in eqn (4) did not have an N ! in the
numerator. Thus the factor N ! seems to be an overcounting that happened because we
treated all the N molecules to be distinguishable. If we divide this factor out and define the
entropy as

S̃ = ln
W (E)

N !
(51)

we get an expression for entropy after mixing in the above mentioned case to be

S̃f = S̃1 + S̃2

Therefore the definition of entropy in eqn (51) does not lead to any paradoxes. We accept
this as the entropy for MB statistics.
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